Iterative Bayesian estimation as an explanation for range and regression effects: a study on human path integration.

نویسندگان

  • Frederike H Petzschner
  • Stefan Glasauer
چکیده

Systematic errors in human path integration were previously associated with processing deficits in the integration of space and time. In the present work, we hypothesized that these errors are de facto the result of a system that aims to optimize its performance by incorporating knowledge about prior experience into the current estimate of displacement. We tested human linear and angular displacement estimation behavior in a production-reproduction task under three different prior experience conditions where samples were drawn from different overlapping sample distributions. We found that (1) behavior was biased toward the center of the underlying sample distribution, (2) the amount of bias increased with increasing sample range, and (3) the standard deviation for all conditions was linearly dependent on the mean reproduced displacements. We propose a model of bayesian estimation on logarithmic scales that explains the observed behavior by optimal fusion of an experience-dependent prior expectation with the current noisy displacement measurement. The iterative update of prior experience is modeled by the formulation of a discrete Kalman filter. The model provides a direct link between Weber-Fechner and Stevens' power law, providing a mechanistic explanation for universal psychophysical effects in human magnitude estimation such as the regression to the mean and the range effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data

This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

Inflation Behavior in Top Sukuk Issuing Countries: Using a Bayesian Log-linear Model

This paper focused on developing a model to study the effect of sukuk issuance on the inflation rate in top sukuk issuing Islamic economies at 2014‎. ‎For this purpose‎, ‎as the available sample size is small‎, ‎a Bayesian approach to regression model is used which contains key supply and demand side factors in addition to the outstanding sukuk volume as potential determinants of inflation rate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 47  شماره 

صفحات  -

تاریخ انتشار 2011